

 User's Manual

 IK 342
 VMEbus Counter Card

 11/98

2

Contents

Contents …... ..2
1 ltems supplied ...4
 1.1 Accessories……………………………………. ..4
2 Important Points 5
3 Technical Description of the IK 342 ..6
 3.1 Access time to measured values ...7
4 Hardware8
 4.1 VMEbus interface... ...8
 4.2 Encoder inputs IK 342 ...8
 Specification of the signals 1 VPP ..8
 Specification of the signals 11 µAPP ..8
 Connectors X1 to X4 for encoders ..9
 4.3 Encoder outputs ...10
 4.4 Compensating the encoder signals..10
 4.5 External functions...12
5 Addressing...13
 5.1 Allocation of the address space ...13
 5.2 Switches and jumpers..14
 5.3 lnterrupts ..15
6 Latching a Position Value ..16
 6.1 Overview ..16
 6.2 Latching with software ...16
 6.3 Latching with hardware via X41 ...16
 6.4 latching with several cards via external cascading ..17
 6.5latching with reference mark17
 6.6 Latching with timer ...18
7 Registers..18
 7.1 BA + $0000: ID register (read only access) ...18
 7.2 Registers of the counter ICs ..18
 Register overview ..19
 $28 to $3C: Data registers for the counters ..19
 $24: Initialization register 1 (write access) ..20
 $24: Initialization register 2 (write access) ..21
 $20: Control register 1 (write access)..22
 $20: Status register 1 (read access) ...22
 $20: Status register 2 (read access) ...22
 $1C: Reference marks register (write access) ..23
 $1C: Amplitude value register {read access) ..23
 $18: Register for enabling measured value interrogation {write access)24
 $18: Register for axis cascading (write access) ..24
 $10: Offset register for the 0° signal (write access) ..25
 $10: Amplitude for the 0° signal (read access)..25
 $0C: Offset register for the 90° signal (write access)..26
 $0C: Amplitude for the 90° signal (read access) ...26
 $08: Timer register (write access) ...27
 $04: Control register 2 (write access)..28
 $04: Status register 3 (read access) ...28
 $04: Identification register (read access) ..29
 $00: Control register 3 (write access)..29
 $00: Status register 4 (read access) ...29

 3

 7.3 BA + $180: Registers for configuring the latch logic30
 $00 to $06: Configuration register for the external inputs El to E4 (read
 and write access)...31
 $08: Configuration register for the input levels El to E4 and configuration
 of encoder input X1, X2 (read and write access) ..31
 $0C Configuration register for encoder inputs X2, X3, X4 (read and write
 access) ..32
 $0C: Register for display of the latch source (read access)................................32
 $0C: Register for display of the latch source (write access)33
 $0E: Configuration register for the I2C bus, interrupt enable/disable,
 excess of input signal level (read access)...33
 $0E: Configuration register for the I2C bus, interrupt enable/disable,
 excess of input signal level (write access) ..33
8. Programming …. ..34
 8.1 Basic functions34
 8.1.1 The header file IK342_0.H ...35
 8.1.2 The functions in IK342_0.C ..36
 8.1.3 The header file SAMPLE.H ..40
 8.1.4 Program example SAMPLE32.C..40
 8.1.5 Program example SAMPLE48.C …………………………………………….. 42
 8.2 Functions for RAM model ………………………... 43
9 Specifications of the IK 342 ………………………………………………………………………………….. 45
10 Block Diagram of the Latch Paths in the Counter ICs …………………………………………………. 46

4

1 Items Supplied

VMEbus counter card IK 342 with encoder inputs for sinusoidal signals (1 VPP or 11 µAPP
switchable), programming examples, driver software end User's Manual

1.1 Accessories

1) Cables up to 150 m are possible if it is guaranteed that the encoder will be supplied by 5 V from an external power
source.

310 199-xx Adapter cable with connector for HEIDENHAIN encoders (1VPP)
15/12-pin with flange socket; standard length.0.5 m

310 198-xx Adapter cable with connector for HEIDENHAIN encoders (11 µAPP)
15/9-pin with flange socket; standard length.0.5 m

309 387-xx Adapter cable with coupling for HEIDENHAIN encoders (1VPP)
15/12-pin standard length 0.5 m

309 382-xx Adapter cable with coupling for HEIDENHAIN encoders (11 µAPP)
15/9-pin standard length 0.5 m

297 050-ZY Connector for external functions at connection X41

272 423-01 Adapter for encoder outputs (sinusoidal current signals)

309 781 xx Connection cable from encoder output to another display or contra!

 5

2 Important Points

Danger to internal components!
When handling components that can be damaged by electrostatic discharge (ESD), observe the
safety recommendations in EN 100015. Use only antistatic packaging material. Be sure that the
work station and the technician are properly grounded during installation.

Some points on the terms used:

• Numbers in hexadecimal notation are identified by $, e.g. $FF.
• Inverted signals have a minus sign before their name, e.g. -PULSE1.
• The term "to latch" means that the counter value is stored in the date register. This count

value must then be interrogated. i.e. read by the software and stored in the computer or
displayed on the screen.

• Please refer to the technical literature on the VMEbus for the significance of the VMEbus
Signals and related terms.

6

3 Technical Description of the IK 342

The IK 342 is a counter card for measurement of distance and angles with the help of VMEbus
computers. You can connect your HEIDENHAIN encoders with sinusoidal voltage and current
signals to the IK 342. The card is then inserted directly into a free slot in the computer.

You can interrogate the positions of the four encoders with external polling inputs or with software,
and then the positions can be further processed in the computer.

The IK 342 is ideal for applications for which high resolution of encoder signals and high-speed
data acquisition are necessary.

Block diagram of the IK 342:

 7

Block diagram of the counter IC:

The interpolation electronics in the IK 342 subdivides the signal period of the input signal 1024-fold.
The 10-bit interpolation value together with the 32-bit value of the period counter form the
42-bit measurement value. The IK 342 stores the measurement values in 48-bit data registers,
whereby the top bits are expanded with the correct sign in two's complement representation.

You can latch the measured values either via external outputs, via software, via timer or by
traversing the reference marks, and then transfer the values to the computer on the VMEbus.

You can compensate phase and amplitude of the sinusoidal encoder signals via electronic
potentiometer using software, and the offset via data registers in the counter IC.

3.1 Access time to measured values

The time necessary for accessing a measured value is < 25 µs.

8

4 Hardware

4.1 VMEbus interface
 Specification: ANSI/IEEE STD 1014-1987, lEC 821 and 297
 Size: Double height board (170 mm x 261 mm), 1 slot
 Slave: A16, D16, D08(EO). D08(O) interrupter
 Interrupt lines: 7
 Current consumption (max): + 12 V: 25 mA
 - 12 V: 25 mA
 +5 V: 350 mA (without encoders)
 Power consumption (max): 2.5 W without encoders

4.2 Encoder inputs IK 342

You can connect HEIDENHAIN linear or angle encoders with sinusoidal voltage signals
A and B or with sinusoidal current signals I1 and I2 to the IK 342. The encoder inputs can be
switched via software and the input frequency is programmable (view registers
BA + $180 + $08 and BA + $180 + $0A).

Specification of the encoder inputs 1 VPP

Signal amplitudes: A, B (0°, 90°)
 R (reference mark)

0,6 VPP to 1,2 VPP
0,2 V to 0,85 V usable component

Signal levels for error message A, B ≤ 0,22 VPP
Maximum input frequency 300 kHz
Cable length 1) Max. 60 m (operational voltage 5,0 V)

1) Cables up 10 150 m are possible if it is guaranteed that the encoder will be supplied by 5 V from an external power
source. In this case the input frequency is reduced to max. 250 kHz.

Specification of the encoder inputs 11 µAPP

Signal amplitudes: I1, I2 (0°, 90°)
 I0 (reference mark)

7 µAPP to 16 µAPP
3,5 µAPP to 8 µAPP usable component

Signal levels for error message I1, I2 ≤ 2,5 µAPP
≥ 25,6 µAPP

Maximum input frequency switchable 33 kHz / 175 kHz
Cable length Max. 30 m (operational voltage 5,0 V)

 9

Connections X 1 to X4 for encoders
D-sub connector with male contact (15-pin)

Connection no. Allocation 1 VPP Allocation 11 µAPP
1 +5 V (UP) +5 V (UP)
2 0 V(UN) 0 V(UN)
3 A+ I1 +
4 A- I1 −
5 0 V 0 V
6 B+ I2 +
7 B- I2 −-
B 0 V 0 V
9 +5 V +5 V
10 R+ I0 +
11 0 V 0 V
12 R- I0 −
13 0 V 0 V
14 Not assigned Not assigned
15 Not assigned Not assigned
Housing External! shield External! shield

10

4.3 Encoder outputs
The IK 342 also outputs the encoder signals of connections Xl to X4 in the form of sinusoidal
current signals via four 10-pin AMP connectors (Xl1, X12, X13 and X14) on the PCB (11 µAPP)'
These signals can be sent out to 9-pin D-sub connectors via an additional assembly (ld.-Nr. 272
423-01). Adapter cables (ld.-Nr. 309 781-..) for connection to HEIDENHAIN position display units or
interpolation electronics can be supplied (see "1.1 Accessories').

Encoder outputs
D-sub connector with male contact {9-pin)
Connection no. Allocation
1 I1 -
2 OV(UN)
3 I2 -
4 Not connected
5 I0 -
6 I1 +
7 Not connected
8 I2 +
9 I0 +
Housing External shield

PCB connector for encoder outputs
AMP with male contact (10-pin)
Connection no. 1) Signal
1a Not connected
1b Not connected
2a Not connected
2b 0V (UN)
3a I0 -
3b I0 +
4a I2 -
4b I2 +
5a I1 -
5b I1 +
1) The side with the locking pins is 'b'.
Connections 1a and 1b are on the side with the notch.

4.4 Compensating the encoder signals

The sinusoidal encoder signals should be compensated in cases where it is required that the
measured values are very accurate. The signals can be compensated using software and the
following values can be compensated:
• Phase and amplitude via electronic potentiometer
• Symmetry (offset) in the counter ICs with offset registers

The potentiometer is controlled by 12C-bus, which in turn is controlled by a register of the
configuration logic and/or latch logic (address $0E, bit0, bit1, bit2). As producing the control
sequences requires a lot of time and effort, we recommend that you use the program POTIS.EXE

 11

or, if this will not run on your computer, that you use the functions and procedures in “BORLAND
C++” from the files IIC.CPP, POTI_1.CPP and POTIS.CPP, as an orientation help for your own
functions.

The IK 342 stores the compensation values for phase and amplitude in the electronic
potentiometer ICs in non-volatile memory. The offset registers in the counter ICs, however, are
volatile (the information is lost when the power is removed). Therefore you have to store the offset
compensation values in an EEPROM in the integral component of the electronic potentiometer.
After switch-on the offset compensation values must be loaded via software from the EEPROM to
the offset registers in the counter ICs. There are two procedures defined for this task in the IIC.CPP
file. The "StoreOffset' procedure stores the offset compensation values in the EEPROM end the
'LoadOffset" procedure transfers the values from the EEPROM to the offset registers in the counter
ICs. 'LoadOffset' is also used by the 'Initlk342' procedure.

The following aids are necessary for the signals to be compensated:
• Oscilloscope for XY-representation
• Digital multimeter
• Software for setting the electronic potentiometer and for describing the offset registers (e.g.

POTIS.EXE)

You can calibrate the four encoder input signals at the PCB connectors for encoder outputs
designated Xl1, X12, X13 end X14. There is also a soldering tag on the PCB which is designated 0
V (see diagram).

Compensating phase shift and amplitude ratio

 Connect the oscilloscope as follows:
- X deflection to Pin 4a of the PCB connector
- Y deflection to Pin 5a of the PCB connector
- Grounded at soldering connection designated 0 V

 Move the scanning head, scanning frequency approx. 1 kHz. You can now see a
LlSSAJOUS figura in the oscilloscope. If both sinusoidal encoder signals are adjusted
optimally, you can see a circle. If the signals are not optimally compensated, you can see
either a vertically-tendanced or horizontally-tendanced ellipsis. If the phase shift of the two
signals is not 90°, then you will see a lopsided ellipsis (see diagram).

Q18 Q19 Q20 Q21

scanned mean value mV
4.88 mV

Reproduced image Evaluation

Amplitudes are the same
90° phase shift
Encoder optimally compensated

Phase shift ≠ 90°

Amplitudes are not the same

 Compensate the amplitude ratio end the phase angle via software by adjusting the

electronic potentiometer.

Compensate offset
 Set the digital multimeter to DC (direct current display) and connect it as follows:
 - For compensating the 0° signal: to Pin 5b (reference potential) and Pin 5a of the PCB

 connector.
 - For compensating the 90° signal: to Pin 4b (reference potential) and Pin 4a of the PCB

 connector.
 Read the measured value for constant scanning head traverse. Pay attention to sign!
 Determine compensation values for the offset register: 1 step = 4.88 mV. The value to be

programmed is calculated as follows:

 Input = −

Note that the compensation value must be programmed with the opposite sign to that of the
scanned mean value. Do not be surprised if you do not see any change at the measuring
point after programming the offset register. The offset register is to be found behind your
measuring point, so you will not be able to observe the effect of your compensation value.
The effect of the compensation value can only be checked when registers $10 for the 0°
amplitude and $0C for the 90° amplitude are read.

4.5 External functions

A 9-pin D-sub connector is provided for external latching of measured values and for
synchronous latching with several cards. The connector required for this (ld.-Nr. 297 050-ZY)
can be ordered from HEIDENHAIN. See.”6 Latching position value” for a more detailed
description of these functions.

Pin layout of the 9-pin D-sub female connector
Interpretation of signal Designation of signal Layout Connection no.
Latch Xl, X2, X3, X4 E1 3
(configurable via latch logic) E2 4
 E3 5
 E4 6
Cascading 0 -CASC0 7
Cascading 1 -CASC1 8
0V OV 1
0V OV 2
+5V +5V 9

 13

5 Addressing

5.1 Allocation of the address space

The VMEbus counter card occupies 512 bytes of the available address space. The 8-pin S1 DIP
switch on the card (with switching levels 1 to 8) divides the A16 address space of the VMEbus
(Address Modifier AM: $29) into 128 sections, each with 512 bytes. Switching level 1 has no
function in setting the base address: it is used for the interrupt vector. Only 128 base addresses
are possible.
You can calculate the base address of the card as follows:
Base address = switch position (without S1) • 512

Example:
DIP switch S1 = $A1; base address = ($A1 shift right 1) • 512 = $A000

Allocation of the address space:

 Function

BA + $000 ID register, 1 register (8 bit) read access only

BA + $080 Counter X1, 32 registers (16 bit)

BA + $0C0 Counter X2, 32 registers (16 bit)

BA + $100 Counter X3, 32 registers (16 bit)

BA + $140 Counter X4, 32 registers (16 bit)

BA + $180 Latching / configuration logic, 8 registers (8 bit)

Each of the four counters {inputs X1 to X41 has its own register block. The functions of the
counter registers and control registers are identical for all four counters. In this description the
counter registers and the control registers are given without an offset. If you want to contact one
of the registers of counter 4, for example, then you have to add the offset to the register address
(base address + $140).

14

5.2 Switches and jumpers

Allocation Jumper 1

Interrupt request line
Jumper 2
Interrupt acknowledge line

1 -IRQ7 -INT1
2 -IRQ6 -INT2
3 -IRQ5 -INT3*
4 -IRQ4 -INT4
5 -IRQ3* -INT5
6 -IRQ2 -INT6
7 -IRQ1 -INT7

* Factory installed
The interrupt is inhibited if there is no jumper.

 15

DIP switch S1: Base address end lACK vector

Switch no. Base address Vector no.
1 0 1
2 1 2
3 2 4
4 4 8
5 8 16
6 16 32
7 32 64
8 64 128

Switch OFF: See table for significance
Switch ON: Significance = 0

Base address = 512 • (sum of the set significances)
Vector number = Sum of the set significances

Factory setting of the base address: 32 = $20
Factory setting of the vector numbers: 64 = $40

5.3 Interrupts
The interrupt sources E1 to E4 (external latch inputs) are inhibited after -RESET and can be
reenabled if bit 0 of the interrupt enable register of the latching logic is set (see "7.3 Register for
configuring the latching logic”). With Jumper J1 you can select the interrupt request line
(possible lines: -IRQ7 to –IRQ1) and with Jumper J2 you can select the interrupt
acknowledgement line (possible lines: -INT1 to –INT7). An interrupt is stored and output until an
interrupt acknowledgement cycle has been successfully completed. If the IK 342 recognizes a
valid interrupt acknowledgement cycle, the vector number is sent {DIP switch setting) and the
interrupt is cleared.

16

6 Latching a Position Value

The counter IC block diagram on the last page is useful for the following.

6.1 Overview
In order that the position value can be read, it must first be latched in one of the two date
registers 0 or 1.
The following latching methods are available:
• With software: each axis individually or all axes together with internal cascading
• With hardware via X41 (signals E1 to E4)
• With several cards via external cascading: via –CASC0 and -CASC1
• With reference pulse
• With timer

During the latching procedure the IK 342 stores the valid position value completely in one or
more date registers without the count procedure being influenced. No other values can then be
latched in the registers until the position value has been read.

6.2 Latching with software
If the corresponding bit of the counter IC control register 1 ($20) is defined, a latching via
software is triggered for the data registers.
Common latching in several counter ICs is carried out via the outputs SYNC0 (data
register 0) end SYNC1 (date register 1) of the counter IC of axis X1. The software interrogation
via the SYNC lines is enabled by the register for axis cascading ($18). These signals are passed
on by the latching logic to the inputs of further counter ICs via X1.L0 to X4.L0 (SYNC0) and
X1.L1 to X4.L1 (SYNC1) and via the enabling register ($18). In this way the IK 342 can latch all
axes at the same time.

In order to have the same propagation time for all axes, you should select a signal path with
delay element for axis X1 and without delay element for aIl other axes.

6.3 Latching with hardware via X41
If E1 to E4 are set to active level, a latching signal is produced in the corresponding data
registers of the counter via X1.L0 to X4.L0 or X1.L1 to X4.L1 and the enable register $18
(see "7.3 Register for configuring the latching logic”). The external latching signals can trigger an
interrupt. For this to happen bit 1 must be set at address $0A in the latching logic, and the
interrupt number must be set via jumpers J1 and J2.

 17

Signal Designation Min. Max.
Encoder input lag - counter tv - < 2 µs
Width of latch signals E1 to E4 te 1.2 µs -
latch signals lag t1 - < 0.8 µs
Lag until the measured value in the data
registers is ready to be read

t2 - < 24 µs

Signal levels for X41 (E1 - E4)
Designation Min. Max.
UeH 3.5 V 32 V
UeL -20 V 1 V
II 0.5 mA 8 mA

The inputs are low active or high active (configurable via latching logic) and are kept at the
corresponding inactive levels by internal pull up /pull down resistances. You can control the
inputs with standard TTL, LS, ALS or CMOS components, or with 24 V signals.

6.4 Latching with several cards via external cascading
The X1 axis counter IC controls the two switching outputs –CASC0 end –CASC1 via the outputs
SYNC0 and SYNC1. The two switching outputs –CASC0 and -CASC1 are connected with the
exterior via the 9-pin D-sub connecting element X41. The –CASC0 signal corresponds to data
register 0 and -CASC1 to data register 1.
If the -CASCx outputs are connected externally with the external latch inputs of further cards via
X41, then a synchronous latching is possible via several lK 342.
Signals levels for X41 (CASC0, CASC1): TTL

18

6.5 Latching with reference mark
If the corresponding bits are set in the initialization register ($24) and the reference mark register
($1C), the programmed function will be carried out when the reference marks are traversed. In
this way you can evaluate both, single and distance-coded, reference marks.

6.6 Latching with timer
You can set a time in the timer register ($0B), after which an interrogation via the enable register
($18) will be carried out. The timer is started in the initialization register ($24).

7 Registers

7.1 BA + $0000: ID register (read only access)

The JD register contains a hardware identification code for the card.
D8 – D4: PCB version D3 – D0: Components

0: Version 01 0: IK 342

7.2 Registers 01 the counter ICs

With the IK 342 today the counter IC G38 is used, which replaces the counter IC G26, whereby
G38 is upward compatible to G26 and is extended by some read functions to individual
registers. The ICs (Q18 to Q21, see picture on page 11) differ not only by their numbers (G26 =
282 150 01, G38 = 315 860 01), but also electrically by the component recognition. (see
recognition register of the counter IC).
For the following description, the block diagram of the counter ICs on the last page is helpful.

Register addressing
Access to the counter ICs can be 8-bit or 16-bit (word or byte access). The type of access is
programmed in the control register 3 ($00) bit 0. As the I K 342 has a 16-bit databus, then
access to the counter ICs in this case should also be 16-bit. In the following we are assuming
16-bit registers tor the register description.
After switch-on the counter ICs are in 8-bit mode (default setting). To revert to 16-bit mode,
either bit 0 is set to 0 via word access to address $00 or byte access to address $03.

Word access
The address from one word (16-bit) to another is increased by four as line A1 of the VMEbus is
connected with A0 of the counter IC. The word addresses are given in the following register
overview. An address (e.g. for the initializing register 1 of axis X2) is calculated as follows (with
the precondition: DIP switch S1 = $40):

Register address = (($40 shift right 1) • $200) + $0C0 + $024 = $40E4

Byte access
For byte access to the high byte, the word addresses of the following register overview are valid.
The address of the low byte is calculated as follows:

Low byte address = address from the register overview + $03

 19

 Register overview
Address offset to
counter base address

Write aceess Read access

$3C Data register 0, LS-Word
$38 No function Data register 0
$34 Data register 0, MS-Word
$30 Data register 1, LS-Word
$2C No function Data register 1
$28 Data register 1, MS-Word
$24 Low byte Initialization register 1 Initialization register 1
 High byte Initialization register 2 Initialization register 2
$20 Low byte Control register 1 Status register 1
 High byte No function Status register 2
$1C Low byte Reference mark register No function
 High byte No function Amplitude value register
$18 Low byte Enable register for interrogation of No function
 High byte position value No function
 Axis cascading
$14 Low byte No function No function
 High byte No function No function
$10 Low byte Offset register for 0° signal Amplitude for 0° signal
 High byte No function Amplitude for 0° signal
$OC Low byte Offset register tor 90° signal Amplitude for 90° signal
 High byte No function Amplitude for 90° signal
$08 Low byte Timer register, LS-Byte No function
 High byte Timer register, MS-Bvte No function
$04 Low byte Control register 2 Status register 3
 High byte No function Identification register
$00 Low byte Control register 3 Status register 4
 High byte No tunction No function

528 10 S3C: Data registers for the counters
The measured values are stored in 48-bit registers. There are two data registers available for
each axis: data register 0 ($3C to $34} and data register 1 ($30 to $28). The measured values
are formed from the 10-bit interpolation value and the 32-bit value of the period counter. This
means that only 42 bits of the 48-bit wide register are used for the measured value. The top
6 bits are expanded with the correct sign in two's complement representation.
The 48-bit data width can be narrowed to 32 bits via initialization register 1 ($24), bit D6.
We can also establish whether the measured value was formed only from the period counter
value (data bits D0 to D9 are not defined), or whether the measured value was formed from the
period counter value and the interpolation value, using initialization register 1 ($24), bit D7.
You can store the counter values in the data registers (see also “6 Latching position value”) via:
• Software interrogation
• External inputs
• Reference marks
• Timers

20

You can interrogate whether the measured value has already been latched in the data registers,
via the status register 1 ($20), bit D0 or D1. As long as bit D0 or D1 is set, then no other value
can be latched until the uppermost value of the word has been read (exception: with control
register 2, bit D6 or D7, latching is enabled without the previous value being read.) In the 48 bit
mode these are the data registers $34h or $28 and in the 32-bit mode the date registers $38 or
$2C. After the measured value has been read bit D0 or D1, in status register 1 ($20), is reset.

If the counter is stopped or if it is stored when the reterence marks are traversed, then D0 to D9
will contain the fixed value 256.

$24: Initialization register 1 (write access)

Bit Function
D0 Operation with/without interpolation

0 = operation as period counter (without interpolation -
 data bits00 to 09 are not defined)

D1 0
D2 Timer

0 = revert timer to 0 and stop
1 = start timer

D3 0
D4 0
D5 0
D6 Latch enable

0= operation mode: 32 bit register
 If bits D24 to D31 are read, then the status bit D0 or D1
 in the status register 1 ($20} is reset.
1 = operation mode: 48 bit register
 If bits D40 to D47 are read, then the status bit
 D0 or D1 in the status register 1 ($20) is reset.

D7 Count direction
The count direction determines whether the positive traverse direction
will count positive or negative (inverse).
0 = normal count direction
1 = inverse count direction
The count direction may only be inverse in the period counter mode! With
interpolation the inverted count direction would result in an inaccurate
gating of interpolation value and period counter value.

 21

$24: Initialization register 2 (write aceess)

Bit Function
D8
D9

Only in period counter operation:
Edge evaluation
Because of the two incremental encoder signals (0° and 90° el.) there
are a maximum of four edges available for evaluation per signal period.
The counters can be programmed to count either one, two or four edges
per signal period.
00 = 1 edge
01 = 2 edges
11 = 4 edges
In operation with an interpolation value. the value for one edge is set
automatically.

D10 Only in period counter operation:
Counting mode
0 = linear counting mode -241 to +241 -1
1 = angular counting mode as in D11,
 for angle encoders with 36 000 or
 360 000 lines per revolution.

D11 Only tor angle display:
Counting mode
0 = 17 999 to -18 000
1 = 179 999 to -180 000

D12 0
D13 0
D14
D15

Measured value interrogation with reference pulse
0 = 1st reference mark stored in data register 0
1 = 1st reference mark stored in data register 1
0 = 2nd reference mark stored in data register 0
1 = 2nd reference mark stored in data register 1

$24: Read access: Bits D0 to D15: reading back the initialization registers 1 and 2

22

$20: Control register 1 (write access)

Bit Function
D0 1 = software polling: measured value in date register 0
D1 1 = software polling: measured value in data register 1
D2 1 = software polling of all data registers (must be enabled in the

 interrogation enable register)
D3 1 = start counter
D4 1 = stop counter
D5 1 = cancel counter
D6 1 = clear encoder error (frequency exceeded)
D7 1 = Cancel amplitude register
D8
D9
D10
D11
D12
D13
D14
D15

No function

$20: Status register 1 (read access)

Bit Function
D0 Status for software interrogation in data regi,ster 0; 1 = value is ready
D1 Status tor software interrogation in data register 1; 1 = value is ready
D2
D3

No function

D4 1 = counter has been stopped

D5 Signal amplitude:
1 = signal amplitude ok
0 = signal amplitude too small (defect, contamination)

D6 1 = encoder error (frequency exceeded)
D7 No function

$20: Status register 2 (read access)

Bit Function
D8 1 = reference mark approach is active
D9
D10
D11
D12

No function

D13 Logic levels for the 0° signal

D14 Logic levels for the 90° signal
D15 Logic levels for the reference mark

 23

$1C: Reference marks register (write access)
Bit Function
D0 1 = start counter
D1 1 = stop counter
D2 1 = cancel counter
D3 1 = interrogate measured value
D4 1 = interrogate measured value as the second reference mark is

 being traversed
D5 1 = clear counter each time a reference mark is traversed
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

No function

$1C: Reference marks/amplitude value register (read accessI
Bit Function
D0 Status “start counter with REF” (with G38 IC only)
D1 Status “stop counter with REF” (with G38 IC only)
D2 Status “clear counter with REF” (with G38 IC only)
D3 Status “fetch measuring value with REF” (with G38 IC only)
D4 Status “fetch measuring value by traversing the 2nd reference mark”

(with G38 IC only)
D5 Status “clear counter by traversing each reference mark”

(with G38 IC only)
D6 – D7 No function
D8
D9

Current amplitude
Each position value interrogation gives a new amplitude value.
D9 D8 IK342
0 0 normal amplitude
 0.47 VPP < Ue < 1.41 VPP
0 1 low amplitude
 0.22 VPP < Ue.< 0.47 VPP
1 0 high amplitude
 Ue.> 1.41 VPP
1 1 erroneously small amplitude
 Ue < 0.22 VPP
The amplitude value should be frozen in control register 2 before
being read via bit D4. The amplitude register is reset by bit D7 in
control register 1.

D10
D11

Minimal amplitude value
Coding and read access see bits D8 and D9.
If the given amplitude value is lower than the stored minimal value more
than four times in a row, then the IK replaces the stored minimal value by
the current amplitude value.

D12
D13

G26: no function
G38: maximum value of amplitude (as written in “Minimal value of amplitude”)

D14
D15

No function

24

$18: Register for enabling measured value interrogation (write access)

Bit Function
D0 1 = enable L0 for data register 0
D1 1 = enable L0 via delay circuit (125 ns) for data register 0
D2 1 = enable the “software polling in all data registers” for data register 0
D3 1 = enable the “software interrogation by timer” for data register 0
D4 1 = enable L1 for data register 1
D5 1 = enable L1 via delay circuit (125 ns) for data register 1
D6 1 = enable the “software polling in all data registers” for data register 1
D7 1 = enable the “software interrogation by timer” for data register 1
You can see more clearly how the individual bits function in the counter IC block diagram on the
last page of this manual.

$18: Register for axis cascading (write access)

Bit Function
D8 1 = enable L0 for all axes (SYNC0)
D9 1 = enable the “software polling in all data registers” for all axes (SYNC0)
D10 1 = enable the timer strobes for all axes (SYNC0)
D11 1 = No function
D12 1 = enable L1 for aIl axes (SYNC1)
D13 1 = enable the “software polling in all data registers” for all axes (SYNC1)
D14 1 = enable the timer strobes for all axes (SYNC1)
D15 1 = No function
You can see more clearly how the individual bits function in the counter IC block diagram on the
last page of this manual.

$18: Read access:
 G26: Register cannot be read back
 G38: Complete register can be read back

 25

$10: Offset register for the O°-signal (write access)
This register contains the 7.bit offset compensation value for the 0° signal in two's complement
representation. The maximum compensation is ± 63.
The compensation values can only be written if one of the status bits D5 or D6 in status register
3 has the value 0.
Functioning:
Offset compensation values are added to the digital values of the 0° signal (0 to 1023) and 90°
signal. In the case of overflow the values are limited to 1023 or 0.

Bit Function
D0
D1
D2
D3
D4
D5
D6

1 = Offset compensation value for the 0° signal in two's complement
 representation

D7
D8
D9
D10
D11
D12
D13
D14
D15

1 = No function

In a power failure the contents of the offset register in the counter ICs may be lost. For this
reason the offset compensation values are stored in an EEPROM in the electronic
potentiometer IC. After switch-on the offset compensation values must be transferred from the
EEPROM to the offset registers of the counter ICs (see procedures “'StoreOffset” and
“LoadOffset”).

$10: Amplitude for the 0° signal (read access)
Each time an analog to digital conversion takes place, the result is stored. Before the values are
read they should be frozen via bit D4 in control register 2.

Bit Function
D0
D1
D2
D3
D4
D5
D6

Amplitude for the 0° signal

D7
D8
D9
D10
D11
D12
D13
D14
D15

No function

26

$0C: Offset register for the 9O°-signal (write access)
This register contains the 7.bit offset compensation value for the 90° signal. See “16h: Offset
register for the 0° signal” for a description of the functioning.

Bit Function
D0
D1
D2
D3
D4
D5
D6

1 = Offset compensation value for the 90° signal in two's complement
 representation

D7
D8
D9
D10
D11
D12
D13
D14
D15

1 = No function

$0C: Amplitude for the 90° signal (read access)
Each time an analog to digital conversion takes place, the result is stored. Before the values are
read they should be frozen via bit D4 in control register 2.

Bit Function
D0
D1
D2
D3
D4
D5
D6

Amplitude for the 90° signal

D7
D8
D9
D10
D11
D12
D13
D14
D15

No function

 27

$08: Timer register (write access)
The 13-bit timer value (0 to 8191) is stored in the timer register $08. The cycle time is given
in µs whereby 1 µs must be subtracted from the desired cycle time. The clock frequency of the
timer is 16 MHz (VMEbus} / 16 = 1 MHz, i.e. an increment of the timer register corresponds
to 1 µs.

Example:
Desired cycle time = 1 ms = 1 000 µs
Value programmed = 1000 -1 = 999
The timer is not yet started when this register is defined. The timer is only started when bit D2 is
set in initialization register 1 ($24). Bit D3 also has to be set in enable register $18.

Bit Function
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12

Timer value

D13
D14
D15

No function

$08: Read access:
 G26: Register cannot be read back
 G38: Timer value can be read back

28

$04: Control register 2 (write access)

Bit Function
D0
D1
D2
D3

Program a fixed value ≥ 8

D4 1 = Freeze amplitude for 0° signal ($10) and 90° signal ($0C) as well as
 amplitude register ($1C high byte).
 This bit must be set to prevent the register values changing during
 readout. You can interrogate whether the values have been frozen via
 bit D4 in status register 3.

D5 0
D6 1 = another interrogation possible via data register 0, without the previous

 measured value being read. In this mode the value can be changed
 during readout.

D7 1 = another interrogation possible via data register 1, without the previous
 measured value being read. In this mode the value can be changed
 during readout

D8
D9
D10
D11
D12
D13
D14
D15

No function

$04: Status register 3 (read access)

Bit Function
D0
D1
D2
D3

G26: Value can not be read back
G38: value can be read back

D4 1 = amplitude for 0° signal ($10) and 90° signal ($0C) as well as
amplitude value register ($1C high byte) are frozen and can be read.

D5 0 = offset register for 0° signal is written.
D6 0 = offset register for 90° signal is written.
D7 No function

 29

$04: Identification register (read access)

Bit Function
D8
D9
D10
D11
D12
D13
D14
D15

IC recognition:
G26: fixed value 8
G38: fixed value 9

$00: Control register 3 (write access)

Bit Function
D0 0 = 16-bit bus

1 = 8-bit bus
D1 Fixed value 0
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

No function

$00: Status register 4. (read access)

Bit Function
D0 Read back D0 (control register 3)
D1 Logic level on pin L0
D2 Logic level on pin L1
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

No function

30

7.3 BA + $180: Registers for configuring the latch logic

The configuring logic consists of six 8-bit registers, of which all can be written and read.
After –RESET all registers are 0.
Each time the latch logic is configured, data registers 0 and 1 of the counter ICs have to be read
once, as a configuration may trigger latch pulses that inhibit further latch procedures in the
counters.

Example
Address for the register for configuration of the inputs El to E4
(assuming that DIP switch = $40):
Register address = (($40 shift right 1) • $200) + $180 + $08 = $4188
The 8-bit register is found in the low byte of this word address.

Overview
Base address configuration logic (BAK): BA + $180

Address offset Function
BAK + $00 Latching configuration X1
BAK + $02 Latching configuration X2
BAK + $04 Latching configuration X3
BAK + $06 Latching configuration X4
BAK + $08 Configuration of the input levels E1 to E4

Configuration encoder inputs X1, X2
BAK + $0A Configuration encoder inputs X2, X3, X4
BAK + $0C Latch source
BAK + $0E I2C bus control, interrupt enable/disable

(1 bit), excess of encoder input signal level.

 31

$00 to $06 Configuration register for the external inputs E1 to E4 (read and write access)

Default value after RESET: 0
Address $00 Configuration register X1
Address $02 Configuration register X2
Address $04 Configuration register X3
Address $06 Configuration register X4
The bits have the same meaning for every axis:

Bit Function
D0 0 = E1 is inhibited for this axis

1 = E1 latches this axis
D1 0 = E1 latches data register 0 of this axis

1 = E1 latches data register 1 of this axis
D2 0 = E2 is inhibited for this axis

1 = E2 latches this axis
D3 0 = E2 latches data register 0 of this axis

1 = E2 latches data register 1 of this axis
D4 0 = E3 is inhibited for this axis

1 = E3 latches this axis
D5 0 = E3 latches data register 0 of this axis

1 = E3 latches data register 1 of this axis
D6 0 = E4 is inhibited for this axis

1 = E4 latches this axis
D7 0 = E4 latches data register 0 of this axis

1 = E4 latches data register 1 of this axis

$08: Configuration register for input levels E1 to E4 and configuration encoder inputs X1,
X2 (read and write access)
Default value after RESET: 0

Bit Function
D0 0 = E1 is low active

1 = E1 is high active
D1 0 = E2 is low active

1 = E2 is high active
D2 0 = E3 is low active

1 = E3 is high active
D3 0 = E4 is low active

1 = E4 is high active
D4 0 = X1: input 1 VPP

1 = X1: input 11 µAPP
D5 Must be set to 1 (absolutely!)
D6 0 = X1: input amplifier fast, 1 VPP: 500 kHz; 11 µAPP:175 kHz

1 = X1: input amplifier slow (33 kHz)
D7 0 = X2: input 1 VPP

1 = X2: input 11 µAPP

32

$0A Configuration register for the encoder inputs X2, X3, X4 (read and write access)
Default value after RESET: 0

Bit Function
D0 Must be set to 1 (absolutely!)
D1 0 = X2: input amplifier fast, 1 VPP: 500 kHz; 11 µAPP:175 kHz

1 = X2: input amplifier slow (33 kHz)
D2 0 = X3: input 1 VPP

1 = X3: input 11 µAPP
D3 Must be set to 1 (absolutely!)
D4 0 = X3: input amplifier fast, 1 VPP: 500 kHz; 11 µAPP:175 kHz

1 = X3: input amplifier slow (33 kHz)
D5 0 = X4: input 1 VPP

1 = X4: input 11 µAPP
D6 Must be set to 1 (absolutely!)
D7 0 = X4: input amplifier fast, 1 VPP: 500 kHz; 11 µAPP:175 kHz

1 = X4: input amplifier slow (33 kHz)

$0C: Register for display of the latch source (read access)
Default value after RESET: 0

Bit Function
D0 1 = latch source was E1
D1 1 = latch source was E2
D2 1 = latch source was E3
D3 1 = latch source was E4
D4 1 = latch source was SYNC0
D5 1 = latch source was SYNC1
D6
D7

No function

 33

$0C: Register for display of the latch source (write access)
Default value after RESET: 0

The accordingly set bit can be reset again with a write access with value “1”.

Bit Function
D0 1 = reset bit 1
D1 1 = reset bit 2
D2 1 = reset bit 3
D3 1 = reset bit 4
D4 1 = reset bit 5
D5 1 = reset bit 6
D6
D7

No function

$0E: Configuration register for the I2C bus, interrupt enable/disable, excess of encoder
input signal level (read access)
Default value after RESET: 0

The accordingly set bit can be reset again with a write access with value “1”.

Bit Function
D0 pin scan serial clock output I2C bus
D1 pin scan serial data output I2C bus
D2 pin scan serial data input I2C bus
D3 pin scan interrupt disable
D4 0 = excess of encoder input signal level X1 (pin scan)
D5 0 = excess of encoder input signal level X2 (pin scan)
D6 0 = excess of encoder input signal level X3 (pin scan)
D7 0 = excess of encoder input signal level X4 (pin scan)

$0E: Configuration register for the I2C bus, interrupt enable/disable, excess of encoder
input signal level (write access)
Default value after RESET: 0

Bit Function
D0 0 = set serial clock output I2C bus

1 = reset serial clock output I2C bus
D1 0 = set serial data output I2C bus

1 = reset serial data output I2C bus
D2 No function
D3 0 = Interrupt disable

1 = Interrupt enable
D4
D5
D6
D7

No function

34

8. Programming

The programming of an IK 342 is shown in !his description using “BORLAND C++” examples.
The programs were created and tested on an industrial computer (from ROTEC, D-76411
Rastatt) with an INTEL 486 CPU (DOS version 6.0). VMEbus interface and BORLAND C++
compiler (version 4.5).
The following files can be used for adapting the ISA bus to the VME bus (they are supplied on
the accompanying disk):
. VMEROTEC.H and
. VMEINIT.C

We are not going to go into details about the data end functioning of these files here, as this has
nothing to do with the functioning of the IK 342.

8.1 Basic functions

You can find the programs described here on the accompanying disk in the subdirectory
SAMPLE1.

The files
• IK342_0.H and
• IK342_0.C

contain the most important data and function definitions which you will need when working with
the IK 342.

The most important functions are listed in the following examples:

Vmelnit()
Initializes the VMEbus. This function is adapted to the industrial computer manufactured by
ROTEC. You will have to write your own initialization function for the hardware you use.

WriteRegister
Writes a value to a 16-bit counter IC register.

ReadRegister
Reads a value from a 16-bit counter IC register.

SoftLatch_0 and SoftLatch_1
Stores the current counter value in data register 0 or data register 1.

CountValueLatched
Checks if the measured value was stored.

PoIlForLatched
Continues the interrogation procedure until a measured value is stored.

ReadCountValue_32
Reads a 32-bit measured value from a counter IC.

ReadCountValue_48
Reads a 48.bit measured value from a counter IC.

 35

SAMPLE32.EXE
The program SAMPLE32.EXE shows a simple application for reading a 32-bit measured value.
Source code: SAMPLE32.C
 IK342_0.C
 VMEINIT.C
Header files: SAMPLE.H
 IK342_0.H
 VMEROTEC.H

SAMPLE48.EXE
The program SAMPLE48.EXE shows a simple application for reading a 48 bit measured value.
Source code: SAMPLE48.C
 IK342_0.C
 VMEINIT.C
Header files: SAMPLE.H
 IK342_O.H
 VMEROTEC.H

The headerfile lK342_0.H
/*--------------------------------IK342_0.H--------------------------------

DR. JOHANNES HEIDENHAIN GmbH, Traunreut, Germany
Header File for the Basic Functions of the IK342

V 1.00
November 1998
--*/

#define CLS printf ("\x1B[2J")

/*--
 Defines for register addresses.
 ---*/
#define INITIALIZING REGISTER Ox24
#define CONTROL REGISTER 1 Ox20
#define CONTROL=REGISTER=2 Ox04

//Configuration- and Id-Register
#define ENLATCHX1 0xOO
#define ENLATCHX2 Ox02
#define ENLATCHX3 Ox04
#define ENLATCHX4 Ox06
#define LATCHPOL Ox08
#define MSINPUT OxOA
#define LATCHSTAT OxOC
#define INTREG OxOE

/*--
 Macro to calculate the IK address.
 ---*/
#define CALCULATE_IK_BASE_ADDRESS(switch) \
 ((unsigned short)(switch >> 1)*Ox0200) │ Ox8000

/*--
 Macro to switch VME to A16 memory space.
 ROTEC specific code.
 --*/
#define SWITCH_VME_TO_A16_ADDRESS_SPACE(Switch) \
 outport (ADR_REG,\
 ((((nsigned short)(switch >> 1)*OxO200)\
 & Ox8000) >> 8) │ OxFCOO)

/*Definitions of functions*/

36

void writeRegister (unsigned short, unsigned char,
 unsigned short, unsigned short);

unsigned short ReadRegister (unsigned short, unsigned char,
 unsigned short);

void SoftLatch_O (unsigned short, unsigned char);

void SoftLatch_1 (unsigned short, unsigned char);

unsigned char CountValueLatched (unsigned short, unsigned char,
 unsigned char);

void PollForLatched (unsigned short, unsigned char,
 unsigned char);

long ReadCountValue_32 (unsigned short, unsigned char,
 unsigned char);

double ReadCountValue_48 (unsigned short, unsigned char,
 unsigned char);

unsigned char ReadConfReg (unsigned short usBaseAddress,
 unsigned short usRegisterAddress);

void WriteConfReg (unsigned short usBaseAddress, unsigned short
usRegisterAddress,
 unsigned char usDatum);

The functions in IK342_0.C
/*-------------------------------IK342_0.C----------------------------------

 DR. JOHANNES HEIDENHAIN GmbH, Traunreut, Germany

 Driver Unit for IK342 (Basic Functions)

 V 1. 00
 November 1998
--/*

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include "ik342 O.h"
#include "vmerotec.h"

/*---------------------Functions--*/
/*--
 WriteRegister
 --
 This function writes a value in a 16-bit
 register of a counter.
 ------------------------Parameters--
 usBaseAddress base address of the IK 342
 ucAxis axis select - axis 1 to axis 4
 usRegisterAddress address of the register
 usDatum value to write to the register address
 usPortAddress port address in which <usDatum> is written
 ---*/
void WriteRegister (unsigned short usBaseAddress, unsigned char ucAxis,
 unsigned short usRegisterAddress,
 unsigned short usDatum)
{
unsigned short usPortAddress;

switch (ucAxis)
 {

 37

 case 1:
 usPortAddress = usBaseAddress + OxO080 + usRegisterAddress;
 break;
 case 2:
 usPortAddress = usBaseAddress + OxOOCO + usRegisterAddress;
 break;
 case 3:
 usPortAddress = usBaseAddress + OxO100 + usRegisterAddress;
 break;
 oase 4:
 usPortAddress = usBaseAddress + OxO140 + usRegisterAddress;
 break;
 default:
 printf ("Wrong axis in function <WriteRegister>");
 }

 /* Write <usDatum> to the counter */
outpw (usPortAddress, usDatum);
}

/*--
 ReadRegister

 This function reads a value from a 16-bit
 register of a counter.
 --------------------------------Parameters-----------------------------------
 usBaseAddress basic address AO to A9 of the IK 342
 ucAxis axis select – axis 1 or axis 2
 usRegisterAddress address of the register
 usPortAddress port address in which <usDatum> is written
 --*/
unsigned short ReadRegister (unsigned short usBaseAddress,
 unsigned char ucAxis, unsigned short usRegisterAddress)
{
unsigned short usPortAddress;

/* Calculate port usRegisterAddress */
switch (ucAxis)
 {
 case 1:
 usPortAddress = usBaseAddress + OxOO80 + usRegisterAddress;
 break;
 case 2:
 usPortAddress = usBaseAddress + OxOOCO + usRegisterAddress;
 break;
 case 3:
 usPortAddress = usBaseAddress + OxO100 + usRegisterAddress;
 break;
 case 4:
 usPortAddress = usBaseAddress + OxO140 + usRegisterAddress;
 break;
 default:
 printf ("Wrong axis in function <writeRegister>");
 }
 /* Read <usDatum> from the counter */
return(inpw(usPortAddress));
}
/*---
 SoftLatch_O
 --
 This function reads the measured value and stores
 it in data register 0.
 --*/
void SoftLatch 0 (unsigned short usBaseAddress, unsigned char ucAxis)
{
WriteRegister (usBaseAddress, ucAxis, Ox20, OxOOO1);
}

38

/*---
 SoftLatch_1
 --
 This function reads the measured value and stores
 it in data register 1.
------------------ */
void SoftLatch 1 (unsigned short usBaseAddress, unsigned char ucAxis)
{
WriteRegister (usBaseAddress, ucAxis, Ox20, OxOOO2);
}

/*---
 CountValueLatched
 -------------------------- ---
 This function checks whether a measured value is
 latched in data register 0 or 1.
 ---*/

unsigned char CountValueLatched (unsigned abort usBaseAddress,
 unsigned char ucAxis, unsigned char ucRegister)
{
unsigned char result;
switch (ucRegister)
 {
 case 0:
 result = (unsigned char)
 (ReadRegister (usBaseAddress, ucAxis, Ox020) & OxOO01);
 break;
 case 1:
 result = (unsigned char)
 (ReadRegister (usBaseAddress, ucAxis, Ox020) & OxOO02);
 break;
 }
return (result);
}

/*--
 PollForLatched
 --
 This function polls until a measured value is
 latched in data register 0 or 1.
 --*/

void PollForLatched (unsigned abort usBaseAddress,
 unsigned char ucAxis,
 unsigned char ucRegister)
{
switch (ucRegister)
 {
 case 0:
 while (CountValueLatched (usBaseAddress, ucAxis, 0) == 0)
 ;
 break;

 case 1:
 while (CountValueLatched (usBaseAddress, ucAxis, 1) == 0)
 ;
 break;
 }

}
/*--
 ReadCount_Value_32

This function reads 32 bits of a measured value.
--*/

 39

long ReadCountValue_32 (unsigned short usBaseAddress,
 unsigned char ucAxis, unsigned char ucRegister)
{
union mapper
 {
 long fieldO;
 unsigned short field1[2];
 }buffer;
switch (ucRegister)
 {
 case 0:
 buffer.field1[0] = ReadRegister (usBaseAddress, ucAxis, Ox3c);
 buffer.field1[1] = ReadRegister (usBaseAddress, ucAxis, 0x38);
 break;
 case 1:
 buffer.field1[0] = ReadRegister (usBaseAddress, ucAxis, Ox30);
 buffer.field1[1] = ReadRegister (usBaseAddress, ucAxis, Ox2C);
 break;
 }
return (buffer.fieldO);
}

/*--
 ReadCouD_Value_48

 This function reads 48 bits of a measured value.
 --*/
double ReadCountValue_48 (unsigned short usBaseAddress,
 unsigned char ucAxis, unsigned char ucRegister)
{
unsigned short usField[3];
double count_value48;

switch (ucRegister)
 {
 case 0:
 uSField[O] = ReadRegister (usBaseAddress, ucAxis, Ox3C);
 usField[l] = ReadRegister (usBaseAddress, ucAxis, Ox38);
 uSField[2] = ReadRegister (usBaseAddress, ucAxis, Ox34);
 break;
 case 1:
 usField[O] = ReadRegister (usBaseAddress, ucAxis, Ox30);
 usField[l) = ReadRegister (uSBaseAddress, ucAxis, Ox2C);
 usField[2) = ReadRegister (usBaseAddress, ucAxis, Ox28);
 break;
 }

if (usField[2] & Ox8000)
 count_value48 = (double)((usField[O] 65535.0 +
 65536.0*(usField[1]-65535.0)+
 4294967296.0*(usField[2]-65535.0)-1);
 else
 count value48 = (double)(usField[O] +
 65536:0*usField[1] +
 4294967296.0*usField[2];

return (count value48);
}

/*---
 ReadConfReg
 --
 This function reads one configuration register from IK342
 ---------------------------------Parameters---------------------------------

 --*/
unsigned char ReadConfReg(unsigned short usBaseAddress,

40

 unsigned short usRegisterAddress)
{
 unsigned short usPortAddress;
 usPortAddress = usBaseAddress + OxO180 + usRegisterAddress;
 return(inp(usPortAddress+1));
{

/*---
 WriteConfReg
 --
This function writes the config-register from IK342
 ---------------------------------Parameters----------------------------------

--*/
void WriteConfReg(unsigned short usBaseAddress, unsigned short usRegisterAddress,
 unsigned char usDatum)
{
 unsigned short usPortAddress;

 usPortAddress = usBaseAddress + OxO180 + usRegisterAddress;
 outp(usPortAddress+1, usDatum); // write <usDatum> to the IK342
}

The header-file SAMPLE.H
/*---------------------------------SAMPLE.H------------------------------------

 DR. JOHANNES HEIDENHAIN GmbH, Traunreut, Germany

 Header File for SAMPLE32.C and SAMPLE48.C of the IK342 examples

 V 1.00
 xxxx 199x-------- */
 ---*/

/*---
 Setting of the DIP switch on board of the IK 342
 ---*/

#define DIP_SWITCH Ox40

The program example SAMPLE32.C
/*---------------------------------SAMPLE32.C----------------------------------

 DR. JOHANNES HEIDENHAIN GmbH, Traunreut, Germany

 A simple program for the IK 342 to display
 four axes. Measured value with 32 bits.

 V 1.00
 November 1998

 Project files: IK342_O.C, SAMPLE32.C, VMEINIT.C
 Include files: IK342_0.H, SAMPLE.H, VMEROTEC.H
 ---*/

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include "ik342_O.h"
#include "sample.h"
#include "vmerotec.h"

int main()
{
double dCountValue1, dCountvalue2, dCountValue3, dCountValue4;

 41

unsigned short usBaseAddress;

CLS;

 /*Initialize VME interface (ROTEC specific functions)*/
VmeInit();
gotoxy(1, 20);
puts("VMEbus initialized. Press any key!");
getch();
CLS;

usBaseAddress = CALCULATE_IK_BASE_ADDRESS(DIP_SWITCH);
SWITCH_VME_TO_A16_ADDRESS_SPACE(DIP_SWITCH);

 /* Set 1Vss 500kHz */

WriteConfReg (usBaseAddress, LATCHPOL, Ox20);
WriteConfReg (usBaseAddress, MSINPUT, Ox49);

 /* Initialize the board in interpolation mode,
 axis 1 */
WriteRegister (usBaseAddress, 1, INITIALIZING REGISTER, OxOO01);
 /* Initialize the board in interpolation mode,
 axis 2 */
WriteRegister (usBaseAddress, 2, INITIALIZING REGISTER, OxOO01);
 /* Initialize the board in interpolation mode,
 axis 3 */
WriteRegister (usBaseAddress, 3, INITIALIZING REGISTER, OxOO01);
 /* Initialize the board in interpolation mode,
 axis 4 */
WriteRegister (usBaseAddress, 4, INITIALIZING_REGISTER, OxOO01);

 /* Reset error bit, start counter, axis 1 */
WriteRegister (usBaseAddress, 1, CONTROL_REGISTER_1, OxO048);
 /* Reset error bit, start counter, axis 2 */
WriteRegister (usBaseAddress, 2, CONTROL_REGISTER_1, OxO048);
 /* Reset error bit, start counter, axis 3 */
WriteRegister (usBaseAddress, 3, CONTROL REGISTER 1, OxO048);
 /* Reset error bit, start counter, axis 4 */
WriteRegister (usBaseAddress, 4, CONTROL_REGISTER_1, OxO048);

 /* Write to control register 2, axis 1 */
WriteRegister (usBaseAddress, 1, CONTROL_REGISTER_2, OxOO08);
 /* Write to control register 2, axis 2 */
WriteRegister (usBaseAddress, 2, CONTROL_REGISTER_2, OxOO08);
 /* Write to control register 2, axis 3 */
WriteRegister (usBaseAddress, 3, CONTROL_REGISTER_2, OxOO08);
 /* Write to control register 2, axis 4 */
WriteRegister (usBaseAddress, 4, CONTROL_REGISTER_2, OxOO08);

 /*Cursor off*/
_setcursortype(_NOCURSOR);

while(!kbhit())
 {

 /* Software latch in register 0, axis 1 */
 SoftLatch 0 (usBaseAddress, 1);
 /* Software latch in register 0, axis 2 */
 SoftLatch_O (usBaseAddress, 2);
 /* Software latch in register 0, axis 3 */
 SoftLatch_O (usBaseAddress, 3);
 /* Software latch in register 0, axis 4 */
 SoftLatch 0 (usBaseAddress, 4);
 /* Poll whether latched in axis 1 */
 PollForLatched (usBaseAddress, 1, 0);
 /* Read axis 1 */

42

 dCountValue1 = (double)ReadCountValue_32 (usBaseAddress, 1, 0);
 /* Poll whether latched in axis 2 */
 pollForLatched (usBaseAddress, 2, 0);
 /* Read axis 2 */
 dCountValue2 = (double)ReadCountvalue_32 (usBaseAddress, 2, 0);
 /* PoIl whether latched in axis 3 */
 PollForLatched (usBaseAddress, 3, 0);
 /* Read axis 3 */
 dCountValue3 = (double)ReadCountValue_32 (usBaseAddress, 3, 0);
 /* Poll whether latched in axis 4 */
 PollForLatched (usBaseAddress, 4, 0);
 /* Read axis 4 */
 dCountValue4 = (double)ReadCountValue_32 (usBaseAddress, 4, 0);
 /* Display measured values */
 gotoxy(5,5);
 printf(%16.4f\t%16.4f", dCountValue1*0.02/1024,
 dCountValue2*0.O2/1024);
 gotoxy(5,10);
 printf("%16.4f\t%16.4f", dCountValue3*0.02/1024,
 dCountValue4*O.02/1024);
 }
 /*Cursor on*/
_setcursortype (_NORMALCURSOR);

return (0);
}

The program example SAMPLE48.C
/*------------------------------------SAMPLE48.C------------------------------

 DR. JOHANNES HEIDENHAIN GmbH, Traunreut, Germany
 A simple program for the IK 342 to display
 four axes. Measured value with 48 bits.

 V 1. 00
 November 1998

 Project files: IK342_O.C, SAMPLE48.C, VMEINIT.C
 Include files: IK342_0.H, SAMPLE.H, VMEROTEC.H
 ---*/

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include "ik342 O.h"
#include "sample.h"
#include"vmerotec.h"

int main()
{
double dCountValue1, dCountValue2, dCountValue3, dCountValue4;
unsigned short usBaseAddress;

CLS;

 /*Initialize VME interface (ROTEC specific functions)*/
VmeInit();
gotoxy(l, 20);
puts("VMEbus initialized. Press any key!");
getch();
CLS;

usBaseAddress = CALCULATE_IK_BASE_ADDRESS(DIP_SWITCH);
SWITCH_VME_TO_AI6_ADDRESS_SPACE(DIP_SWITCH);

 43

 /* Set 1Vss 500kHz, all axes */
WriteConfReg (usBaseAddress, LATCHPOL, Ox20);
WriteConfReg (usBaseAddress, MSINPUT, Ox49);

 /* Initialise the board in interpolation mode,
 axis 1 */
writeRegister (usBaseAddress, 1, INITIALIZING_REGISTER, OxOO41);
 /* Initialise the board in interpolation mode,
 axis 2 */
WriteRegister (uSBaseAddress, 2, INITIALIZING_REGISTER, OxOO41);
 /* Initialise the board in interpolation mode,
 axis 3 */
WriteRegister (usBaseAddress, 3, INITIALIZING_REGISTER, OxO041);
 /* Initialise the board in interpolation mode,
 axis 4 */
writeRegister (usBaseAddress, 4, INITIALIZING_REGISTER, OxO041);

 /* Reset error bit, start counter, axis 1 */
WriteRegister (usBaseAddress, 1, CONTROL REGISTER 1, OxO048);
 /* Reset error bit, start counter, axis 2 */
WriteRegister (usBaseAddress, 2, CONTROL REGISTER 1, OxO048);
 /* Reset error bit, start counter, axis 3 */
WriteRegister (usBaseAddress, 3, CONTROL REGISTER 1, OxOO48);
 /* Reset error bit, start counter, axis 4 */
WriteRegister (usBaseAddress, 4, CONTROL_REGISTER_l, OxO048);

 /* Write to control register 2, axis 1 */
WriteRegister (usBaseAddress, 1, CONTROL_REGISTER_2, OxOO08);
 /* Write to control register 2, axis 2 */
WriteRegister (usBaseAddress, 2, CONTROL_REGISTER_2, OxOO08);
 /* Write to control register 2, axis 3 */
WriteRegister (usBaseAddress, 3, CONTROL REGISTER 2, OxOO08);
 /* Write to control register 2, axis 4 */
WriteRegister (usBaseAddress, 4, CONTROL_REGISTER_2, OxOO08);

/*Cursor off*/
_setcursortype(_NOCURSOR);

while(!kbhit())
 {
 /* Software latch in register 0, axis 1 */
 SoftLatch_O (usBaseAddress, 1);
 /* Software latch in register 0, axis 2 */
 SoftLatch_O (usBaseAddress, 2);
 /* Software latch in register 0, axis 3 */
 SoftLatch_O (usBaseAddress, 3);
 /* Software latch in register 0, axis 4 */
 SoftLatch_O (usBaseAddress, 4);

 /* Poll whether latched in axis 1 */
 PollForLatched (usBaseAddress, 1, 0);
 /* Read axis 1 */
 dCountValue1 = ReadCountValue_48 (usBaseAddress, 1, 0);
 /* Poll whether latched in axis 2 */
 PollForLatched (usBaseAddress, 2, 0);
 /* Read axis 2 */
 dCountValue2 = ReadCountValue_48 (usBaseAddress, 2, 0);
 /* Poll whether latched in axis 3 */
 PollForLatched (usBaseAddress, 3, 0);
 /* Read axis 3 */
 dCountValue3 = ReadCountValue_48 (usBaseAddress, 3, 0);
 /* Poll whether latched in axis 4 */
 PollForLatched (usBaseAddress, 4, 0);
 /* Read axis 4 */
 dCountValue4 = ReadCountValue_48 (usBaseAddress, 4, 0);

 /* Display measured values */

44

 gotoxy(5,5);
 printf("%16.4f\t%16.4f", dCountValue1*0.02/1024,
 dCountValue2*0.02/1024);

 gotoxy(5,10);
 printf("%16.4f\t%16.4f", dCountValue3*0.02/1024,
 dCountValue4*0.02/1024);

 }
 /*Cursor on*/
_setcursortype (_NORMALCURSOR);

return (0);
}

8.2 Functions for RAM storage model
You can find examples with the RAM model in the SAMPLE2 sub-directory.
The data structures end functions used are defined and explained in the following files:

IK342.H: In this header file you can set the addresses for up to 16 IK 342.

IK342_1.H: Data structures for a RAM storage model for the I K 342 registers and

explanations of the functions in the files IK342_1.CPP, IIC.CPP and
POTI_1.CPP.

IK342_1.CPP: Basic functions for the IK 342.

IIC.CPP: Functions for data transfer via I2C-bus.

POTI_1.CPP: Functions for setting the electronic potentiometer.

In the file IK342_1.H a RAM storage model for the IK 342 registers is set up with the help of data
structures. The data for the RAM model is written to the IK 342 registers with the help of the
procedures InitHandler and CommHandler.

POTlS.EXE
The program POTIS.EXE shows how you can set the electronic potentiometer of the IK 342 via
the I2C-bus using software.

Source code: POTIS.CPP
 IK342_1.CPP
 IIC.CPP
 POTI1.CPP
 VMEINIT.C
Header files: IK342.H
 IK342_1.H
 VMEROTEC.H

DISPLAY.EXE
The program DISPLAY.EXE shows the contents of the IK 342 data registers.
Source code: DISPLAY.CPP
 IK342_1.CPP
 IIC.CPP
 VMEINIT.C
Header files: IK342.H
 IK342_1.H
 VMEROTEC.H

 45

9 Specifications of the IK 341 V

Mechanical data

Dimensions Double Europa card format, size B
External dimensions: 262 mm x 187 mm x 20 mm

Operating temperature
Storage temperature

0°C to 55°C
-30°C to 70°C

Electrical data

VMEbus specification ANSI/IEEE STD1014-1987, lEC 821 and 297
Double height board with J1 connector
1 slot
Address space A16: Slave, D08 (EO)
 Slave. D16
Interrupter: D08 (O) ROAK

Addresses

512 bytes in address space A16 (128 base addresses)
Address space selectable via DIP switch

Inputs / outputs
Encoder inputs X1 to X4: Axis 1 to axis 4. D-sub connector, 15-pin

Sinusoidal signals: 1 VPP, input frequency:
 selectable 33 / 500 kHz
 11 µAPP, input frequency:
 selectable 33 / 175 kHz

Encoder outputs

Option: adapter with four outputs, D-sub connector, 9-pin,
Sinusoidal signals 11 µAPP

External latch signals

X41: D-sub connector, 9-pin
Four inputs E1 to E4: low-active or high-active selectable
Uhigh: 3.5 V to 32 V UIow: -20 V to 1 V
Two outputs –CASC0, -CASC1: TTL signal levels

Signal interpolation

1 024-fold

Compensation of
encoder signals

Phase and amplitude via electronic potentiometer
Offset via registers in the counter ICs

Data register for
measured values

48 bit; only 42 bits are used for the measured value

Interrupts

-INT1 to -INT7

Power consumption Approx. 2.5 W (without encoders)

46

10 Block Diagram of the Latch Paths in the Counter ICs

The following block diagram shows:
• How the latch signals affect the date registers
• The function of the individual bits of the enable register for latching measured values
• Axis cascading and the relevant bits from the register with the same name
• The register for I2C-bus control

The delay circuits with a delay time of 125 ns are used in synchronized latching of several axes
to compensate the propagation time between the axes. In synchronized latching you should
select a signal path with delay circuit for axis 1 and a signal path without delay circuit for all other
axes. As the same counter ICs are used for all axes, delay circuits exist in all axes. It is
important to note that not all signal path combinations are useful!

Functions of the latching logic

Simultaneous latching of data registers over .several axes
The output SYNC0 of the counter IC for axis 1 is connected with the inputs X1.LO to X4.LO via
latching logic. and the output SYNC1 with the inputs X1.L1 1 to X4.L1 (internally wired).
Therefore it is possible to latch aIl axes at the same time.

Simultaneous latching with several cards
The output SYNC0 of the counter IC for axis 1 is connected with output CASC0 via the latching
logic to connector X41, and the output SYNC1 is connected with output CASC1 (internally
wired). Therefore it is possible to latch the counter ICs of several IK 342 cards at the same time.

Configurable inputs
The inputs E1 to E4 are assigned to the latch inputs X1.L0 to X4.L0 and X1.L 1 to X4.L1 via the
latching logic (can be programmed via register). Moreover it can also be established whether a
signal to the inputs E1 to E4 should generate an interrupt.

 47

48

Edition 11/98 - Translation by HEIDENHAIN (SWITZERLAND) AG

